Data Processing for HTMS in Drug Discovery
High-throughput mass spectrometry: 10x faster readout, advanced data processing, and seamless LIMS integration. Key for modern drug discovery.
Introduction
High-throughput mass spectrometry that could deliver > 10 times faster sample readout speed than traditional LC-based platforms has emerged as a powerful analytical technique, enabling the rapid analysis of complex biological samples. This increased speed of MS data acquisition has brought a critical demand for automatic data processing capabilities that should match or surpass the speed of data acquisition. Those data processing capabilities should serve the different requirements of drug discovery workflows.
Areas covered
This paper introduced the key steps of the automatic data processing workflows for high-throughput MS technologies. Specific examples and requirements are detailed for different drug discovery applications.
Expert opinion
The demand for automatic data processing in high-throughput mass spectrometry is driven by the need to keep pace with the accelerated speed of data acquisition. The seamless integration of processing capabilities with LIMS, efficient data review mechanisms, and the exploration of future features such as real-time feedback, automatic method optimization, and AI model training is crucial for advancing the drug discovery field. As technology continues to evolve, the synergy between high-throughput mass spectrometry and intelligent data processing will undoubtedly play a pivotal role in shaping the future of high-throughput drug discovery applications.